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Non-linear oscillations of an autonomous Hamiltonian system with two degrees of freedom in the neighbourhood of a stable 
equilibrium are considered. It is assumed that the frequency ratio of the linear oscillations is close to or equal to two, and that 
the Hamiltonian is sign-definite in the neighbourhood of the equilibrium. A solution is presented to the problem of the orbital 
stability of periodic motions emanating from the equilibrium position. Conditionally periodic motions of an approximate system 
are analysed taking into account terms of order up to and including three in the normalized Hamiltonian. The KAM theory is 
used to consider the problem of maintaining these motions taking into account fourth- and higher-order terms in the series 
expansion of the Hamiltonian in a sufficiently small neighbourhood of the equilibrium. The results are used to investigate non- 
linear oscillations of an elastic pendulum. © 2000 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Consider an autonomous Hamiltonian system with two degrees of freedom, assuming that the origin 
qi = O, Pi = 0 (i = l ,  2)  of the phase space is an equilibrium position of the system and that the 
Hamiltonian is analytic in a certain neighbourhood of the origin 

H = H2 + H3 + ... + HIc + ... (1.1) 

where H k are forms of degree k in qi andpi (i = 1, 2). The quadratic form H2 is assumed to be positive- 
definite. Then the equilibrium position is stable and the linearized system is a combination of two 
harmonic oscillators, whose frequencies we will denote by ci (i = 1, 2). 

We will investigate non-linear oscillations in the neighbourhood of the equilibrium position on the 
assumption that there is a third-order resonance, when the frequency ratio of the linear oscillations is 
close to or equal to two. We put G 1 = (2 + ~)~2,  where 0 ~< Igl ~ ]. 

A good many publications have been devoted to the analysis of non-linear oscillations in Hamiltonian 
systems in the presence of resonance. Results of approximate studies have been published for third- 
order resonance [1-7]. The problem of the existence of resonant periodic motions in a small neighbour- 
hood of an equilibrium position has been analysed rigorously [8, 9], and their orbital stability has been 
investigated in the first approximation [9]. 

The purpose of this paper is to give a detailed treatment of the general nature of non-linear 
conditionally periodic motions in a small neighbourhood of an equilibrium position in the case when 
the frequencies of the linear oscillations are exactly commensurable (g = 0), as well as a solution of 
the non-linear problem of the orbital stability of periodic motions emanating from the equilibrium 
position in the case of exact or approximate commensurability (0 ~< II-tl "~ 1). 

We will assume that the canonically conjugate variables qi and Pi (i = 1, 2)  have been chosen (via a 
normalizing canonical transformation) so that the second- and third-degree terms in expansion (1.1) 
are in normal form. This means (see, e.g. [10]) that series (1.1) may be written as follows: 

l 2 42 [ . 2  _ H =2(Yl(q~ +p2)+-~G2(q2 +p2Z)+--~ -- 2 qltP2 _ q 2 )  2Plq2p2]+...  

where the dots stand for terms of degree higher than three in qi and Pi. 
If we introduce, instead of the time t, and independent variable x = G2t and, allowing for the smallness 

of the relevant neighbourhood of the origin, make a canonical change of variables qi, Pi -''> xi, Yi, where 

q i = E X i ,  p i = E Y i  , i=1,2, O < E < ~ I  

then the Hamiltonian becomes 
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H = 1 (2  +R)(x 2 + y2)+ l ( x 2  + yg )+e  ~22 [xl (y2 _ x~ ) -  2ylx2Y2]+O(e 2) 
Z Z / 4  

(1.2) 

2. L Y A P U N O V  S H O R T - P E R I O D  M O T I O N S  AND T H E I R  S T A B I L I T Y  

Since the ratio o2:ol is not an integer, it follows by Lyapunov's holomorphic integral theorem [11] 
that a family of short-period motions exists emanating from the equilibrium position qi = 0, Pi = 0 
(i = 1, 2). This means (see [12, 13]) that, given a system with Hamiltonian (1.2), a canonical 
transformation xi, Yi -+ x'i, Y[ exists, convergent for sufficiently small e and differing from the identical 
transformation by a quantity of order e 2, under which the Hamiltonian takes a form whose series 
expansion in powers of x~, y~ includes no terms involving the first powers of the variables x~, y~, while 
the series terms not dependent  on x2 and Y2 are functions of the combination x~ 2, y~2 only. This 
transformation does not affect the zero- and first-order terms in e written out explicitly in (1.2). The 
solutions of the transformed system corresponding to short-period motions may be written as 

x~=.x[csin~l(X+Xo), y~=~rccos~l('c+Xo), x~ =0, y~ =0  (2.1) 

where c > 0 and x0 are arbitrary constants and the frequency ~"~1 is a function of c with f21 = (2 + ~t) 
q- O(E2). 

To solve the problem of orbital stability of a Lyapunov short-period motion, we apply a preliminary 
canonical transformation x~, y~, x~, y~ --> 0, ~, ~2, r12 which reduces the problem of orbital stability of the 
periodic motion (2.1) to an equivalent problem: the stability of an autonomous Hamiltonian system with 
two degrees of freedom with respect to part of the variables. This transformation may be expressed as 
a superposition of two univalent canonical changes of variables: first x{, y~, x~, y~ ~ tp*, r*, x~, y~ where 

" ,  ' " ' ' 
x = sin~ y ---- COS~0*, X 2 = X2, Y2 = Y2 

followed by a change of variable tp*, r*, x~, y~-+ 0, ~, ~2, 112 where 

• l 2 2 
tp =0,  r*=~- -~ (~2+ 'q2  ) 

. o 0 . o 0 
x 2 =cos {2+sin~T12, Y2 = - s i n  ~2+c°s~112 

The equations of motion in the new variables correspond to a Hamiltonian 

F = ( 2 + l x ) ~ - l ~ t ( ~ + r l ~ ) - e ~ 2 r l 2 f f  i 1 2 - ~ ( { 2  + rl~) + O(e 2) (2.2) 

while the periodic motions (2.1) may be written in the form 

8=~ t ( ' r+~0) ,  ~=c l2 ,  {2=0 ,  r h = 0  

We now introduce perturbations oc2, [~2, 71 by the formulae 

~2 =tXz, 112 =132, ~ = c / 2 + y  I 

The problem of the orbital stability of the periodic motion (2.1) is equivalent to the problem of the 
stability of a system with Hamiltonian (2.2) with respect to the variables or2, 1~2, Y1. 

The Hamiltonian of the perturbed motion may be written as a series 

F = F2 + F4 + ... (2.3) 

where the dots stand for the terms of order at least six in a2, 132, "4(I 71 I); F2 and F4 are forms of degree 
two and four, respectively, in these variables, with I" 2 = ~1)'1 + 1,~, where F~ and F4 may be written, 
neglecting quantities of order e 2 and higher, in the form 

r'4 = ¼  (2c) [a2fl2 + - 4ad32"tl  ] 
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In the linearized system of equations of the perturbed motion, the variables a2 and 1~2 are separated 
from 0 and 71- Let  Ix - E 8, where 8 i> 1. The characteristic equation of a system with Hamiltonian F~ 
is 

~? + ¼ ( i a  2 - 282c)(1 + 0 ( 8 ) )  = 0 (2 .4 )  

If 8 is sufficiently small and I~tl < eq2c, then Eq. (2.4) has a positive real root, and, by Lyapunov's theorem 
on stability in the first approximation, the periodic motion (2.1) is orbitally stable. But if 

It t I> 84T~ (2.5) 

then the roots of Eq. (2.4) --+f~2, where ~1 = 1/2•(I x2 - 282c), are pure imaginary; linear analysis is then 
no longer adequate for rigorous conclusions to be drawn as to stability. One has to use the Arnol 'd-  
Moser theorem [12, 14]. 

Omitting the fairly easy arguments, we immediately present the normalized Hamiltonian of the 
perturbed motion 

F = ~jpj  - o ~ 2 p  2 + c20P 2 + c 1 IPlP2 + c02P 2 + 03 (2.6) 

where 0 3 stands for all the terms of order greater than two in Pl and Pc, (~ = signet and the coefficients 
cij satisfy the following estimates 

t~e 2 3 ~ e ~ t  ~- 0(8) (2.7) 
c20 = 0(8 2), clj = 2 ~  2 + O(e 2), Co2 - _ 4f------~2 

By previous results [12, 14], a sufficient condition for orbital stability is that the Hamiltonian (2.3) 
be iso-energetically non-degenerate; this condition may be written as 

n - C2o~ + acu~lf~2 + c02~  ~ 0 

Using expression (2.7), we obtain 

3"~-'C~'~1 (£1j " + O(E3)) 
A = 2~22 

If 8 is sufficiently small, A is non-zero, and it therefore follows from the Arnol 'd-Moser  theorem that 
the periodic motions (2.1) are orbitally stable, provided that condition (2.5) for their stability in the 
linear approximation is satisfied. 

3. F A M I L I E S  OF L O N G - P E R I O D  M O T I O N S  AND T H E I R  S T A B I L I T Y  

Applying in succession the two univalent canonical changes of variables defined by 

xi=~isintpi, y i = ~ i C O S t P i ,  i=1 ,2  (3.1) 

Ql = tPl - 2tP2, Q2 = (I)2, PI = rl, P2 = 2rl + r2 (3.2) 

we reduce Hamiltonian (1.2) to the form 

H = ~ + P2 + e(P2 - 2Pi)~J-~J sin Ql + O(82) (3.3) 

where, by (3.1) and (3.3), necessarily P2 ~> 2P1- 
Let us consider the approximate system whose Hamiltonian is defined by (3.3), if quantities O(e 2) 

are dropped. In this system the coordinate Q2 is cyclic and and integral Pz = c = const > 0 exists. The 
variation of the variables Q1 and P1 is described by canonical equations with Hamiltonian 

H = P-PI + Ef(Pl)sin QI, f = (c - 2P I )a/-~-I (3.4) 

In the approximate system equilibrium positions a l  = Q~, P1 = P~ exist. A fairly simple analysis shows 
that (1) if Ix < -e~/2c, one equilibrium position exists, for which Q1 = -+ n/2, ~t + el '  = 0, where f '  
is the value of the derivative at P1 = P'a;  (2) if I~tl < 842c, two equilibrium positions exist, for which 
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Q1 = --- n/2, g + f '  = o; 3) if g > e~/(2c), there will be one equilibrium position, for which Q1 = -re/2, 
g - e f ' =  O. 

Now, proceeding as previously in [15, 16], one can apply iso-energetic reduction to transform to 
Whittaker's equations and, using Poincar6's method, show that in the full system with Hamiltonian (3.3) 
families of long-period solutions emanate from the above equilibrium positions. The period of these 
motions as functions of x tends to 2n as e ~ 0. 

Noting condition (2.5), one arrives at a known conclusion (see [9]): if a family of Lyapunov motions 
is stable, a family of long-period motions also exists; as one crosses the boundary Igl < ~4(2c) of the 
stability domain of the Lyapunov motions into their unstable domain Igl < e,/(2c), yet another family 
of long-period motions appears. It has been shown [9] that the families of long period motions are 
orbitally stable in the first approximation. 

We will show that these families are also orbitally stable in the rigorous non-linear formulation of 
the problem. To do so, as in Section 2, we derive the normal form of the Hamiltonian of the perturbed 
motion and then use the Arnol 'd-Moser theorem. The normal form will be analogous to (2.6) 

H = (3,p, + (32p 2 + C2oP~ + c,,p,p2 + Co2P~ + 03 (3.5) 

Rather complicated computations show that for periodic motions corresponding to equilibria 
Q1 = 4- n/2, P1 = P~ the coefficients of function (3.5) obey the following estimates 

a~ =..z-e t.,fff~l +o(e2) ,  a 2 = l+_e.v/-P~" + o(e 2) 

C2o = --e 3(c2 + 4P].2 ) + O(e 2), c]1 = O(e), %2 = O(e2) 
8ff,,2pj .2 

The values of the function f and its derivative f '  are evaluated at P1 = P]. 
The orbital stability condition c20 ~2 - Cu~1~2 + c028 ] ¢ 0 reduces, for small e, to the inequality 

c20 e 0, which is obviously satisfied if e is small enough. 

4. C O N D I T I O N A L L Y  P E R I O D I C  M O T I O N S  

We now consider non-linear oscillations other than the periodic motions studieff in Sections 2 and 
3. We will confine ourselves to the case of exact commensurability 2:1, assuming that the parameter g 
in (3.3) is zero. 

Approximate system. If I-t = 0, the Hamiltonian of the approximate system is 

H* = P2 + Iz(P2 - 2Pt)~t-P]-I sin Ql (4.1) 

In this system, P2 = const > O, dQ2/dx = 1 + e ~/(P1) sin Q1, and the equations describing the variation 
of the variables Q1 and P1 have a Hamiltonian of the form 

F = EJ(P1)sinQl, (4.2) 

where f i s  the function defined in (3.4) and 0 < P1 ~< c/2. The equations corresponding to the function 
(4.2) 

dQl = ef '  sin Q], dPj = - e f  cos Qt (4.3) 
dx d'c 

have the integral 

F = e h =  const (4.4) 

It follows from the properties of the funct ionf  and from the inequality I sinQ11 ~< 1 that in this integral 
Ih[ ~< ~1( 2/27)c 3/2. 

If h = +-- ~[(2/27)c 3/2, we have equilibrium positions Q] = --+ rff2, P1 = c/6 of system (4.3). In the full 
system with Hamiltonian (3.3) they correspond to the families of orbitally stable long-period motions 
considered in Section 3. 
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When h = 0 there are two possible types of motion. In motion of one type, Pr = c/2, which corresponds 
to the Lyapunov short-period motions which, as seen in Section 2, are orbitally unstable when u = 0. 
The motions of the second type are asymptotic to the Lyapunov motions as z + 2~ (Fig. la). 

If 0 < @l < $2/27)c3”, the motion is oscillatory in nature. These motions are shown in Fig. l(b) in 
the Qr, Pr plane as closed orbits around the equilibrium points (?7c/2, c/6), and in Fig. l(a), in the Pr, 
dP,/dz plane, as orbits around the point (c/6,0). Let us determine an explicit expression for the function 
PI(~) on these orbits. 

Using integral (4.4) to eliminate Q, from the second equation of system (4.3), we arrive at the equation 

=&*(f* -h2) (4.5) 

The PI values corresponding to real oscillatory motion are those for whichf* > h*. 
Equation (4.5) can be integrated in terms of elliptic functions. We obtain 

4 = c{x, +(x2 -x,)sn*[aJ~r,k]} 

k2=(X2-X~)I(X3-_~), O<k*<l 

(4.6) 

where Xj 0’ = 1, 2,3) are the roots of the equation Q(X) = 0 

Q(x) =x3 - x2 + x/4 - 22154 (4.7) 

Here we have introduced the notation z = d(27/2)cp3’*h (0 < 1 z 1 < 1). For the quantitiesxj, which are 
functions of z, we have the following expressions 

2 
xi = -cos 

3 
, j = 1,2,3 (4.8) 

It can be verified that 0 c x1 < l/6 < x2 < l/2 c x3 c 213. 
The minimum and maximum values of PI(z) are denoted in Fig. l(a) by cl = cxl and c2 = cx2, 

respectively. 
With the function (4.6) known, one can determine Qr from integral (4.4). The frequency w1 at which 

the values of Qr and PI vary is computed from the formula 

o =. +&=3 
1 * 

2K(k) 
(4.9) 

where K(k) is the complete elliptic integral of the first kind and w* = &&z is the frequency of small 
oscillations of the approximate system in the neighbourhood of its equilibrium points (+rc/2, c/6). The 
quantity or/w* is a function of z. Its graph is shown in Fig. 2. As z + 1 (in the neighbourhood of the 
equilibria) we have 

w, =a* [ I-J-(l-z)+O((l-z)x) 
1 

(a) 

Fig. 1. 
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and as z ~ 0 (when the closed orbit in Fig. l(a) approaches arbitrarily close to the asymptotic orbits) 
the frequency of  the oscillations (o 1 tends to zero, in such a way that 

COt= - ~tO,  / ln z 

Action-angle variables. When investigating the oscillations in the full system it is convenient to introduce 
action-angle variables [17] for the approximate Hamiltonian (4.1). To fix our ideas, we will consider 
the oscillations represented in Fig. l (b)  in the Q1, P1 plane by the closed orbits around the points (n/2, 
c/6). Along such orbits, 0 < h < ~1(2/27)c 3/2, or 0 < z < 1. 

We first introduce action variables I 1 and 12. Since Q2 is a cyclic coordinate, it follows that 12 = / 2 ,  
while I1 is obtained from the formula 

!, = - ~  ~ PidQ, (4.10) 

where P1 is defined by the following equality, which follows from (4.4) 

(/2 - 2PI )~P1-1 sin Q1 = h (4.11) 

and the integral is evaluated along the aforementioned closed orbit in the Qa, P1 plane. 
Using (4.11) and Eqs (4.3), one can reduce the integral in (4.10) to an integral along the curve in 

the P1, dP1/dx plane around the point (c/6, 0) in Fig. l(a). The result is 

I i  = hC~ 2 Ptf '  
c, f 4 f  2 - h z dPl (4.12) 

w h e r e f i s  the function in (3.4), with c = 12. 
Making the substitution P1 = 1~ in (4.12), and noting that 

we obtain the integral 

h= z 2~121~l~ 2 (4.13) 

II = .~12z !2 1 - 6 x  dx 
36~ (1 - 2x) ~a/'~-~ 

where O(x) is the function (4.7). Integrating, we find that 

11 = "/~S)v(z) 

where I1 (s) = -/2/4 is the limit value of the action variable I1 as z ~ 0, and 

(4.14) 

W(z) = 2-~Z 2H(n, k) - 3(1 - 2x, )K(k) x 2 - x 1 
, n = 2  , 0 < n < l  

9re(1 - 2x I )-~33 - xl 1 - 2x I 
(4.15) 

where Fl(n, k) is the complete elliptic integral of the third kind [18] and k is as defined in (4.6). The 
graph of the function W(z) is shown in Fig. 2. 

Equation (4.14) can be solved for z, giving 

z = tp(ll/12) (4.16) 

In particular, for small I 1 values (i.e., in a small neighbourhood of the equilibrium position) we have 

z = I + 3 -~( I  l /12 )+ 15/4(11 /12)2 +... 

By (4.13) and (4.16), we can write (4.11) in the form 

(12 - 2Pi).qC~t sin Q, =2.~-~ l~q~( l ,  112) 

and Hamiltonian (4.1) of the approximate system may be written as follows: 

(4.17) 
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H* = H(°)(I 2) +eH (t)(l I, 12) 

H f°) = 12, H (') = 2.ql~-~13/2q)(ll / 12) 

In this situation, the frequency tol of (4.9) satisfies the equality 

(4.18) 

and 032 is determined from the formula 

(ol = ,~HO)/-dlt (4.19) 

o~ = 1 + v_x3HO)[Ol2 (4.20) 

The following expression for on(1)/~I 2 is derived from (4.9), (4.18) and (4.19) 

0H (I) _ z l2K  - x~/6(x3 - Xl )11 

We will now show how to obtain a canonical change of variables Qi, Pi ~ Ii, wi (i = 1, 2) that will 
yield action-angle variables. The requisite calculations are considerably simplified, since a solution of 
Eqs (4.3) for the variables Q1 and Px is already known. We will use the following proposition. 

Proposi t ion.  Let H ( q ,  p )  be the Hamiltonian of a system with one degree of freedom. Suppose that 
in some range of values of the constant of integration H ( q , p )  = h the motion is periodic in nature and 
is described by the formulae 

q = q*(t + t o , h), p = p*(t + t o, h) 

Let I be the action variable and let h(/) be the Hamiltonian H expressed in terms of action-angle variables 
/, w. Then the univalent canonical change of variables q, p ~ / ,  w may be written in the form 

q = q*(w[to, h), p = p*(w[to, h); h = h(1), co = dh/dl  

The truth of this almost obvious statement may be verified, for example, by checking directly that 
the Poisson bracket (q*, p*) equals unity. 

Using this proposition, we obtain from (4.3), (4.4) and (4.6) a change of variables Q1, P1 -~ Ib Wl in 
the form 

n s n u c n u d n u  
Ql = x - arc cos (4.21) 

( 1  - nsn 2 u)~/s + k 2 sn 2 u 

PI = I2[x2 + (x2 - Xl) sn2 u]; u = K w  I / re, s = x I / ( x  3 - x 1) 

where k 2 is given by (4.6) and n is as defined in (4.15); the quantities xj are calculated by formulae (4.8) 
and (4.16). 

The change of variables (4.21) could also have been obtained using a generating function of the form 

Qt 
$1(1 , , I2 ,Q, )= I PtdQ, 

7tl2 

The function e l  = el(I1, ]2, a l )  is determined from (4.17). 
The change of variables (4.21), which is canonical with respect to 11 and Wx, transforms the left-hand 

side of equality (4.17) into its right-hand side//(1). The transformation involves 12 as a parameter. To 
obtain a transformation ai ,  e i  --4 li, w i ( / =  1, 2) which is also canonical in the variables 12 and w2 and 
reduces Hamiltonian (4.1) to the form (4.18), we introduce a generating function 

S( l l ,  I2, QI ,  Q2) = I2Q2 + Sl 

Then, as might be expected 

e, ~p~ 
w2 = Q2 + f --dQ~ 

x12 ~/2 
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Hence ,  reason ing  f rom relat ions (4.3), (4.17) and (4.21), one  can find Qa = w2 + g(I], 12, Wl). The  
explicit fo rm o f  the funct ion g will not  be  wri t ten out  here  as it will not  be needed  in what  follows. 

Preservation o f  conditionally periodic motions in the full system. I f  0 < h < "~ ( 2/27)c 3/2, the mot ion  in 
the approx ima te  system is oscillatory. T h e  f requencies  of  the oscillations are de t e rmined  by fo rmulae  
(4.9) and (4.20). I f  the rat io  c01:C0a for  given initial data  is not  a ra t ional  number ,  the mot ion  will be 
condit ional ly periodic.  

We will now cons ider  the full sys tem whose  Hami l ton i an  is given by (3.3), but  put t ing ~t = 0. In te rms 
of  the var iables  11 and  Wl (i = 1, 2), this Hami l ton ian  will be  

H = H(°)(I2) + e,n(l)(ll, 12 ) -I- E2H(2)(/I, 12, w], w2;E ) (4.22) 

where/_/(0) and H 0) are  funct ions as in (4.18) and/ / (2)  is def ined in the oscillation domain  0 < h < 
~(2/27)c 3/2 as a 2n-per iodic  funct ion of  Wl and w2, analytic in all its a rguments .  

W h e n  e = 0, Hami l ton i an  (4.22) depends  on only one of  the action var iables  12. Consequent ly ,  this 
is a case of  p r o p e r  degeneracy  [14]. At  the same t ime 

aH (°) OH 0) a2H (]) 
01~-2- ~:0, ~ ~0, c~----~l 2 ~=0 (4.23) 

The truth of the first two relations follows at once from (4.9), (4.18) and (4.19). Let us verify the third. 
Computations show that 

a2H (1) = 5G(z) 

G(Z) = g2Z K(x3 - x2)[2(x2 - xl )(3x2 - I) - 1] + E(x 3 - x I ) 
60 K 3 ( x  3 - x I )(x 3 - x 2)2 (x 2 _ Xl )2 

where E = E(k 2) is the complete elliptic integral of the second kind. 
If 0 < z < 1, G(z) is positive and monotone decreasing; moreover, if z --~ 1, then G(z) -~ 1, and if 

z --) 0, then 

G - -  

,2 

Z 

18= 2 
5z in 3 z 

A graph of G(z) is shown in Fig. 2. 
Thus all three relations (4.23) are true. 

t~f Z ! 

Fig. 2. 



Non-linear oscillations of a Hamiltonian system with 2:1 resonance 723 

Consequently, by previously known results [14, 19], when 0 < h < x1(2127)c 3/2 the motion of the full 
system with Hamiltonian (3.3) is conditionally periodic with frequencies toa and o~2, for most initial data. 
Only a part Q(exp(-alU1)), where al = const > 0, of the phase space is not filled by conditionally periodic 
orbits. Under  these conditions, for all initial data the quantities Ii (i = 1, 2) are for all x close to their 
initial values 

II,(X) - I,(0)1 < a2E (a 2 = const) 

5. O S C I L L A T I O N S  OF AN E L A S T I C  P E N D U L U M  

Following the approach of Vitt and Gorelik [3], let us consider the problem of non-linear resonant 
oscillations of an elastic pendulum. The pendulum is a point mass, attached at one end of a weightless 
spring whose other end is fastened to a fixed point O. Motion takes place in a fixed vertical plane in a 
uniform gravitational field. Suppose m is the mass of the point, g is the acceleration due to gravity, l0 
is the length of the undeformed spring, and k is its stiffness. Let p and 0 denote the polar coordinates 
of the point, with the angle 0 measured from an axis passing through the point O at which the spring 
is attached and pointing vertically downwards. 

The2pendulum may be in a state of equilibrium on that axis. Then 0 = 0 and p = l, where 10 = 
l(1 - Z ). Here Z = ~l(mg/(kl)) is the ratio of the frequency q(g/l) of small horizontal oscillations of the 
point in the vicinity of equilibrium to the frequency "4(k/m) of its small oscillations along the vertical. 

Let us investigate the pendulum in the neighbourhood of this equilibrium position. As generalized 
coordinates we take the dimensionless quantities { and rl defined by 

= p / l -  1, rl = .Vl-~O 

Further, introducing dimensionless momenta 

p~ = ~ J - m ~ ,  pq = 411g( l  + ~)2~ 

and transforming to dimensionless time x = ~l(g/l)t, we obtain the Hamiltonian 

H -  1 2 p2 

The solution of the equations of motion corresponding to equilibrium of the point on the vertical is 
= 11 = p~ = Pn = 0. The expansion of Hamiltonian (5.1) in the neighbourhood of this solution is 

The unimportant constant term in this expansion is omitted. 
In keeping with our assumption that we are investigating motions of the pendulum near its equilibrium 

position, we introduce a small parameter e through the change of variables 

~=e~,  l]=g'q, p ~ = e ~ ,  pn=E~n, 0<1~,~1 

This change of variables is canonical with valence E -2. The Hamiltonian corresponding to the equations 
of motion in the new variables is 

- 2  l - 2  - 2  E - - 2  H =  (~2+p~)+~(T  I + p n ) + ~ ( ~  -2 /32)+0(~  2) (5.3) 

Let us assume that twice the frequency of small horizontal oscillations of the pendulum is close to 
the frequency of its small vertical oscillations. Introducing yet another small parameter, the "frequency 
difference" g, we put 

k.~k-/-m = ~ ( 2  + I.t), (0 I tl<l) 

We will assume that l.t is of order of magnitude at least 1 relative to e. 
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We apply one more canonical transformation (with valence 9/8) 

~ = _...3 -" _ ~8 (x~ _ 5 y~ ) + O( e2 ) 

= -  3 x2+e  YlY2+O(e2) (5.4) 

" ~ = -  3 Y I + O ( e 2 )  

242 E 
Pn = - " i f ' -  Y2 + "~ x2Yl + O( i~2 ) 

In the new variablesxi, Yi (i = 1, 2), the motion is described by canonical equations with Hamiltonian 
(1.2). The oscillations of the pendulum may now be analysed on the basis of the general conclusions 
derived above in Sections 2--4 for oscillations of an autonomous Hamiltonian system with 2:1 resonance. 

Short-period motions. In our problem concerning the oscillations of an elastic pendulum where the 
elastic force obeys a linear law, the Lyapunov short-period motions are harmonic oscillations of the 
point mass along a vertical axis passing through the point of attachment O of the spring. For these 
oscillations we have 

(5.5) 

where t o and c are arbitrary constants (c > 0). If inequality (2.5) is true, then, for sufficiently small e, 
these oscillations will be orbitally stable. But if the reverse inequality to (2.5) is true, we have orbital 
instability. This is in agreement with well-known results obtained by analytical investigation of the stability 
of low-amplitude vertical oscillations (see, e.g. [20]). The orbital stability of vertical oscillations of 
arbitrary amplitude was studied in [21] by numerical methods. 

Long-period motions. According to Section 3, long-period motions emanate from equilibrium 
positions of the system for which Q1 = -+ re/2, and the corresponding PI values are the roots of the 
equation g +_ f '  = 0. Denoting" these values by PI-* (the upper sign" for Q1 = re/2 and the lower sign" for 
Q1 = -re/2), we find that 

Pl -+ = h/ (g/e)  2 +6c + g / e ]  2/36 

Denote the long-period motions corresponding to equilibria Q1 = - n/2, P1 = P~ by 1-I -+. In accordance 
with the canonical transformations of this section and Section 3, these periodic motions of the point 
mass are described in terms of the original polar coordinates p, 0 by the formulae 

0 = - 4 ~ 2 ( c  - 2 P1 + ) sin Qz + O(E2) (5 .6)  

Q2 =(l +E~P-~ + o(l~Z)) g~( t  + to) 

If we ignore O(e 2) quantities in (5.6), the orbits of the point mass in the motions 11-+ will be parabolas, 
described twice per period. In l-I + (l-l-) the branches of the parabola point downwards (upwards). The 
existence of the motions FI-* has been pointed out in [3] (see also [221). 

To describe the bifurcations of the periodic motions, as discussed in Section 3, we consider three cases. 
1. g < -e~/(2c). In this case the Lyapunov short-period motions (5.5) are orbitally stable and one 

more family, l-I + of orbitally stable long-period motions exists. In this case, 0 < P~- < c/18. 
2. Igl < e,/(2c). As the boundary g = -e,/(2c) of the stability domain of Lyapunov motions is crossed 

into their instability domain [gl < E~/(2c), the family rl- of orbitally stable long-period motions is 
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generated. Thus, there are three families of periodic motions in the domain Igl < E~/!+2c): an orbitally 
unstable family of Lyapunov short-period motions and two orbitally stable families 1-1- of long-period 
motions. The following relations hold 

c l l 8 < P l + < c / 6 < P l - < c / 2  for - e ~ r ~  < g <0 

P I+=PI -=C/6  for la=0 

c l I 8 < P I - < c l 6 < P I + < C / 2  for O < g < e ~ / ~  

3. g > e~/(2c). As the boundary ~t = e~/(2c) of the instability domain of Lyapunov motions is crossed 
into their stability domain l.t > eV(2c), the family FI + of long-period motions disappears. Thus, there 
are two families of periodic motions in the domain g > e~/(2c): Lyapunov motions and FI- motions, 
with 0 < P~ < c/18. 

The bifurcation portrait just described is outlined in Fig. 3 in the g, e,/(2c) plane. The boundaries of 
the instability domain of the Lyapunov short-period motions are represented in Fig. 3 by the bisectors 
of the first and second coordinate angles. The FI +- motions are represented by the parabolas, while the 
Lyapunov motions are represented by vertical segments, the solid lines corresponding to orbitally stable 
motions and the dashed lines to unstable ones. 

Energy "transfer" between vertical and horizontal oscillations. One of the most important non-linear 
effects in the motion of an autonomous Hamiltonian system in the vicinity of a stable equilibrium position 
with 2:1 resonance is the possibility of periodic energy transfer between its degrees of freedom. The 
case of a system with two degrees of freedom has been investigated in detail, using the elastic pendulum 
as an example [3]. Asymptotic methods, such as the method of averaging, were used there. 

It is interesting to clarify the situation with regard to energy transfer in the full and not only the 
approximate system. It follows from the results of the last part of Section 4 that, in a sufficiently small 
neighbourhood of an equilibrium position of an elastic pendulum, the phenomenon of periodic energy 
transfer between its vertical and horizontal oscillations exists over an infinite interval of time, for the 
majority of initial data. The measure of the set of initial data in phase space for which energy transfer 
may not occur is exponentially small. 
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